
Welcome back2
to CS429H!

Week 2

Best Ed meme of the week:

Questions on lecture content?
Or about cats?

Quiz (review) everyone say
YAY!

Question 1
[1 pts; 5 min] Give one example of temporal locality and one example of spatial locality within hardware or software.

Temporal Locality - Data is likely to be used again a short time after being used initially.

Ex. Registers storing values temporarily / for loop constantly using var i;

Spatial Locality - Data located close to other data that is used, is also likely to be used.

Ex. Cache bringing in 64 bytes of data at a time / moving through an array.

Question 2
[2 pts; 10 min] Most programming languages have a way to reference symbols defined in other files. In Java, this can be done with an
import statement, which simply allows programmers to reference names without typing out the whole path, while in C this can be done
with a #include directive. What is one benefit and one drawback of a language having #include rather than import?

Question 2
[2 pts; 10 min] Most programming languages have a way to reference symbols defined in other files. In Java, this can be done with an
import statement, which simply allows programmers to reference names without typing out the whole path, while in C this can be done
with a #include directive. What is one benefit and one drawback of a language having #include rather than import?

Benefits - More flexibility, can include non-symbols (strings, partial functions, etc),

header-only libraries, file names don’t have to match symbol names

Drawbacks - More error prone, double definition, circular dependencies, more work

to use #ifdef/#ifndef to only include certain symbols, increases pre-processing time,

linker errors

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x???????????????? rdi 0x????????????????

Initial state of registers is unknown

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x000000c0ffeecafe rdi 0x????????????????

Since the first argument is a literal, it
can’t be the dest, showing that this
problem uses AT&T syntax

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x000000c0ffeecafe rdi 0x00000000000000ff

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x000000c0ffeecafe rdi 0x0000000000000001

sub src, dest

dest = dest - src

0xff - 0xfe = 0x01

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x000000c0ffeecafe rdi 0x000000c0ffeecaff

add src, dest

dest = dest + src

0x01 + 0xc0ffeecafe =
0xc0ffeecaff

Question 3
mov $0xc0ffeecafe, %rax

mov $0xff, %rdi

sub $0xfe, %rdi

add %rax, %rdi

mov $0xb0ba, %ax

rax 0x000000c0ffeeb0ba rdi 0x000000c0ffeecaff

%ax is the 16-bit version of %rax
(%eax also exists and is the 32-bit
version)

Writing to %ax does not cause
zero-extension

Question 4

Question 4
● sizeof()

○ This gets the number of bytes a type takes up. It will return the size of a char*

● Double dereferencing
○ str[i] internally does; it’s equivalent to *(str + i)

● Double swapping
○ If you go to length instead of length/2, the string gets reversed twice

● Reassigning str
○ In place means the memory location str pointed to at the beginning of the method execution

should now contain the reversed string

P2

Poll
How’s your status on P2?

A. What’s P2?

B. I’ve heard of it

C. I’ve cloned the starter code

and/or looked through it

D. I’ve started planning/writing

code

E. I’m mostly done but might still

have bugs

F. P2 any% speedrun

Miscellaneous p2 things
● Function evaluation - it’s really just an operand with two expressions on either

side…

● Recursive descent - understanding order of execution

● Tokenization / ASTs - if you don’t know what this means, it’s not too late

Assembly Review
● What is assembly?

○ It is the lowest-level human-readable interface to encode a sequence of instructions

● Why should we care about assembly?
○ It helps us understand what the machine is doing when we run compiled code

● What are the different types of assembly?
○ There are a lot: x86[_64], ARM, RISC-V, PowerPC, and more!

● Why are there different types of assembly?
○ Each corresponds to a different underlying architecture, with different abstractions and

operations

● In this class, we will be discussing 2 architectures: AMD64 (x86_64), and
AArch64 (ARM)

○ What are some differences between these architectures?

AMD64 vs. AArch64
● They both start with an A

● CISC

● Faster or slower per instruction?

● Why do you think AMD64 is so

popular for

laptop/desktop/server machines?
○ Will it be in the future?

● They both end with 64

● RISC

● More energy efficient or less

energy efficient?

● Why is AArch64 so popular for

embedded/mobile/microcontroll

er platforms?
○ Will it be in the future?

Emulator (P3)

*all of this is very speculative since we don’t have the project yet so we’re mostly going off memory from when Alex did this project in 2022

What’s an emulator? Something ducks walk on?
● Software that imitates another system

● Architecture emulators - interpret machine language rather than directly using

hardware of the host system

● Allow you to run software made for specific systems on other systems
○ Examples: qemu, Project64, BlueStacks

Assembly Crash Course (aka how to read)
https://developer.arm.com/documentation/ddi0487/latest/ ← this thing is going to

be your best friend for the next few weeks

https://developer.arm.com/documentation/ddi0487/latest/

Test Cases!
● Written in ARM (csid.s), assembled to machine code (csid.arm), and an out file

(csid.ok)

● Good code quality for test cases:
○ Especially comments. Assembly is hard to read.

○ Make everyone’s lives easier and include descriptive comments, explaining what your code is

doing and what you are trying to test.

● The .s file may not be part of the test files. Consider adding them to the test

case validity sheet, so people can actually debug with/understand your test.
○ But you can convert the machine code to assembly if someone doesn’t provide this

Writing Assembly (ARM)
.section .data // initialized global/static variables
hello:

.asciz "Hello\n"
num:

.byte 15

.section .text // code goes in this section

.global _start
_start:

movz x0, #15
adrp x1, :pg_hi21:hello // load page number of hello
add x1, x1, :lo12:hello // store pointer to hello in x1

adrp x3, :pg_hi21:num // load page number of num into x3
 ldr x4, [x3, :lo12:num] // load num into x4

save your file as csid.s

Compiling Assembly (ARM)
~gheith/public/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu/bin/
aarch64-none-linux-gnu-gcc -nostdlib csid.S -o csid.arm

(stay tuned to see if there are any changes to this command)

You can also add this directory to your PATH so you don’t have to type this all out:

export PATH=~gheith/public/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu/bin:$PATH

aarch64-none-linux-gnu-gcc -nostdlib csid.S -o csid.arm

Disassemble Machine Code (to ARM)
● objdump is your friend!!

● .arm test case files are binary files and pretty unreadable by default

● objdump can output human-readable assembly code

~gheith/public/gcc-arm-10.3-2021.07-x86_64-aarch64-none-linux-gnu/bin
/aarch64-none-linux-gnu-objdump -d csid.arm

Same directory as last slide so if that is on your PATH then this should work:

aarch64-none-linux-gnu-objdump -d csid.arm

Questions?

 oooo$$$$$$$$$$$$oooo
 oo$$$$$$$$$$$$$$$$$$$$$$$$o
 oo$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o o$ $$ o$
 o $ oo o$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$o $$ $$ $$o$
 oo $ $ "$ o$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$o $$$o$$o$
 "$$$$$$o$ o$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$o $$$$$$$$
 $$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$
 $$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$ $$$$$$$$$$$$$$ """$$$
 "$$$""""$$$ "$$$
 $$$ o$$ "$$$o
 o$$" $$$ $$$o
 $$$ $$$" "$$$$$$ooooo$$$$o
 o$$$oooo$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ o$$$$$$$$$$$$$$$$$
 $$$$$$$$"$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$""""""""
 """" $$$$ "$$$$$$$$$$$$$$$$$$$$$$$$$$$$" o$$$
 "$$$o """$$$$$$$$$$$$$$$$$$"$$" $$$
 $$$o "$$""$$$$$$"""" o$$$
 $$$$o o$$$"
 "$$$$o o$$$$$$o"$$$$o o$$$$
 "$$$$$oo ""$$$$o$$$$$o o$$$$""
 ""$$$$$oooo "$$$o$$$$$$$$$"""
 ""$$$$$$$oo $$$$$$$$$$
 """"$$$$$$$$$$$
 $$$$$$$$$$$$
 $$$$$$$$$$"
 "$$$""""

