Welcome back?

to CS429H!

Best Ed meme of the week:

‘905 ... pass [0.22]

g&

STUDENT
600861 900773

L S

N O

(0] Add a comment...

Questions on lecture content?
Or about cats?

QUIZ (review) €VEryone say
YAY'!

Question 1

[1 pts; 5 min] Give one example of temporal locality and one example of spatial locality within hardware or software.
Temporal Locality - Data is likely to be used again a short time after being used initially.
Ex. Registers storing values temporarily / for loop constantly using var i;

Spatial Locality - Data located close to other data that is used, is also likely to be used.
Ex. Cache bringing in 64 bytes of data at a time / moving through an array.

Question 2

[2 pts; 10 min] Most programming languages have a way to reference symbols defined in other files. In Java, this can be done with an
import statement, which simply allows programmers to reference names without typing out the whole path, while in C this can be done
with a #include directive. What is one benefit and one drawback of a language having #include rather than import?

Question 2

[2 pts; 10 min] Most programming languages have a way to reference symbols defined in other files. In Java, this can be done with an
import statement, which simply allows programmers to reference names without typing out the whole path, while in C this can be done
with a #include directive. What is one benefit and one drawback of a language having #include rather than import?

Benefits - More flexibility, can include non-symbols (strings, partial functions, etc),
header-only libraries, file names don’t have to match symbol names

Drawbacks - More error prone, double definition, circular dependencies, more work
to use #ifdef/#ifndef to only include certain symbols, increases pre-processing time,
linker errors

Question 3

mov SOxcOffeecafe, %rax
mov SOxff, %rdi
sub So0xfe, %rdi
add %rax, %rdi

mov SOxbOba, %ax

Question 3

mov SOxc@ffeecafe, %rax Initial state of registers is unknown
mov SOxff, %rdi
sub So0xfe, %rdi
add %rax, %rdi

mov SOxbOba, %ax

rax Ox?2?222222222222222 rdi Ox?2222222222222222

Question 3

mov SOxcOffeecafe, %rax - Since the first argument is a literal, it
o can't be the dest, showing that this
mov $6xff, %rdi problem uses AT&T syntax

sub So0xfe, %rdi
add %rax, %rdi

mov SOxbOba, %ax

rax Bx000000cOffeecafe rdi BX??272727272727?27277?7?7?7?7

Question 3

mov SOxcOffeecafe, %rax

mov SOxff, %rdi -

sub So0xfe, %rdi

add %rax, %rdi

mov SOxbOba, %ax

rax

Bx000000cOffeecafe

rdi

0x00000000000000f

Question 3

mov SOxcOffeecafe, %rax

mov SOxff, %rdi

sub So0xfe, %rdi

add %rax, %rdi

mov SOxbOba, %ax

rax

Bx000000cOffeecafe

sub src, dest

dest

dest - src

- Oxff - Oxfe = Ox01T

rdi

Bx0000000000000001

Question 3

mov SOxcOffeecafe, %rax

mov SOxff, %rdi

sub So0xfe, %rdi

add %rax, %rdi -

mov SOxbOba, %ax

rax

Bx000000cOffeecafe

add src, dest

dest

dest + src

Bx01 + OxcBffeecafe =
OxcOffeecaff

rdi

Ox000000cOffeecaff

Question 3

mov SOxcOffeecafe, %rax

mov SOxff, %rdi

sub So0xfe, %rdi

add %rax, %rdi

mov $0xbBba, %ax -

rax

Bx000000cOffeebBba

%ax is the 16-bit version of %rax
(%eax also exists and is the 32-bit
version)

Writing to %ax does not cause
zero-extension

rdi Ox000000cOffeecaff

@ EXOPMLSllIiE% Add..~ More~ Templates ’ Sponsors intel GO{?gle sonarcloud & | Share~ Policies@Q@~ Other~

Csource #1 £ X 0O X | x86-64 gcc 13.2 (Editor #1) # X O X | Output of x86-64 gcc 13.2 (Compiler #1) # X o X
A~ @ +- v @c ¥ | x86-64 gcc 13.2 v 2 @ Compiler B A~ UWraplines. = Selectall
1 #include <stdint.h> A B~ ¥~ B F +~ /- ASM ger:lerati?n compi:f.er‘ returned: ©
2 #include <stdio.h> Execution build compiler returned: @
3 4 cLESs T - Program returned: ©
i SR maantyg 2) .string "rax: @x%lx\nrdi: @x%lx\r A DXCOEFeehOba
. 3 main:
5 uinté4_t rax; rdi: OxcOffeecaff
6 uint64_t rdi; % push rbp
7 asm (5 mov rbp, rsp
8 "mov $OXCOFFEECAFE, %%rax\n\t" & sub ESRNILe
9 "mov $OXFF, %%rdi\n\t" 7 mov $0xCOFFEEkaFE, %rax
10 "sub $OxFE, %%rdi\n\t" — 8 MG Atk el
11 "add %%rax, %%rdi\n\t" = sl i
12 "mov $OxBOBA, %%ax\n\t" e add g, Fedi
13 "mov %%rax, %@\n\t" 11 mov $OxBOBA, %ax
14 "mov %%rdi, %1 5 WO i GAX
15 "=pt (pax), "=r" (rdi)); 13 mov %rdi, rax
16 printff(f"rax: ox%lx\nrdi: @x%lx\n", rax o mov QWORD' PTR [rbp~8], irdx
17 r'etur'nue; 15 mov QWORD PTR [rbp-16], rax
18} 16 mov rdx, QWORD PTR [rbp-16]
17 mov rax, QWORD PTR [rbp-8]
18 mov rsi, rax
19 mov edi, OFFSET FLAT:.LC@
20 mov eax, ©
21 call printf
22 mov eax, ©
23 leave
24 ret

C H Output (0/0) x86-64 gcc 13.2 i - 535ms (53938) ~339 lines filtered

(1 [= Compiler License

Question 4

1. [4 points; 20 min] Implement the following strrev method in C. The method should reverse
the string in-place, but you can use auxiliary space. You can assume the string is nonempty
and properly terminated with a null character.

void strrev(char* str) {
int length = 0;
while (str[length] != “\0’) {
length++;

for(int i = 0; i < length/2; i++){
char tmp = str[i];
str[i] = str|[length = i = 1];
str[length - i - 1] = tmp;

Question 4

o sizeof|()
o This gets the number of bytes a type takes up. It will return the size of a char*
e Doubledereferencing
o str[i] internally does; it’s equivalent to *(str + i)
e Double swapping
o Ifyougotolengthinstead of length/2, the string gets reversed twice
e Reassigning str
o Inplace means the memory location str pointed to at the beginning of the method execution
should now contain the reversed string

P2

Poll

How’s your status on P2?

What's P2?

I've heard of it

I’'ve cloned the starter code
and/or looked through it

I've started planning/writing
code

I’m mostly done but might still
have bugs

P2 any% speedrun

Miscellaneous p2 things

e Function evaluation - it's really just an operand with two expressions on either

side...
e Recursive descent - understanding order of execution
e Tokenization/ASTs - if you don’t know what this means, it’s not too late

Assembly Review

e Whatis assembly?
o Itisthe lowest-level human-readable interface to encode a sequence of instructions

e Why should we care about assembly?
o It helps us understand what the machine is doing when we run compiled code

e What are the different types of assembly?
o Therearealot: x86[_64], ARM, RISC-V, PowerPC, and more!

e Why are there different types of assembly?

o Each corresponds to a different underlying architecture, with different abstractions and
operations

e Inthis class, we will be discussing 2 architectures: AMD64 (x86_64), and
AArché64 (ARM)

o What are some differences between these architectures?

AMD64 VS.

They both start withan A

CISC

Faster or slower per instruction?
Why do you think AMDé64 is so
popular for

laptop/desktop/server machines?
o Willit beinthe future?

AArcho64

They both end with 64

RISC

More energy efficient or less
energy efficient?

Why is AArché4 so popular for
embedded/mobile/microcontroll

er platforms?
o Willit bein the future?

Emulator (P3

*all of this is very speculative since we don’t have the project yet so we're mostly going off memory from when Alex did this project in 2022

What’s an emulator? Something ducks walk on?

e Software that imitates another system
e Architecture emulators - interpret machine language rather than directly using
hardware of the host system

e Allow you to run software made for specific systems on other systems
o Examples: gemu, Projecté4, BlueStacks

Assembly Crash Course (aka how to read)

https://developer.arm.com/documentation/ddi0O487/latest/ < this thing is going to
be your best friend for the next few weeks

https://developer.arm.com/documentation/ddi0487/latest/

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

C6.2.1

ADC

Add with Carry adds two register values and the Carry flag value. and writes the result to the destination register.

|31 30 29 28|27 26 25 24|23 22 21 20| 16[15141312[1110 9 | 5 4| 0|

[sfloJo]1 1 0 1 0 0 0 of Rm o ooo0 o0 of Rn | Rd |
op S

32-bit variant

Applies when sf == 0.

ADC <Wd>, <Wn>, <Wm>

64-bit variant

Applies when sf = 1.

ADC <Xd>, <Xn>, <Xm>

Decode for all variants of this encoding

integer d = UInt(Rd);
integer n = UInt(Rn);
integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

Assembler symbols

<Wd>

Operation

Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 32-bit name of the first general-purpose source register. encoded in the "Rn" field.
Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.
Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.
Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

Operation

bits(datasize) result;

bits(datasize) operandl = X[n, datasize];

bits(datasize) operand2 = X[m, datasize];

(result, -) = AddWithCarry(operandl, operand2, PSTATE.C);

X[d, datasize] = result;

Operational information
IfPSTATEDIT is 1:

. The execution time of this instruction is independent of:
— The values of the data supplied in any of its registers.

— The values of the NZCV flags.
C6-1250 Copyright © 2013-2023 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487J.a
Non-Confidential 1D042523

A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

. The response of this instruction to asynchronous exceptions does not vary based on:
— The values of the data supplied in any of its registers.
— The values of the NZCV flags.

Test Cases!

e Writtenin ARM (csid.s), assembled to machine code (csid.arm), and an out file
(csid.ok)

e Good code quality for test cases:

o Especially comments. Assembly is hard to read.
o Make everyone’s lives easier and include descriptive comments, explaining what your code is
doing and what you are trying to test.

e The s file may not be part of the test files. Consider adding them to the test

case validity sheet, so people can actually debug with/understand your test.
o Butyou can convert the machine code to assembly if someone doesn’t provide this

Writing Assembly (ARM)

.section .data // initialized global/static variables
hello:
.asciz "Hello\n"
num:
.byte 15
.section .text // code goes in this section
.global _start
_start:
movz xO0, #15
adrp x1, :pg_hi21:hello // load page number of hello
add x1, x1, :1lo12:hello // store pointer to hello in x1
adrp x3, :pg_hi21:num // load page number of num into x3
1dr x4, [x3, :1lo12:num] // load num into x4

save your file as csid.s
S

Compiling Assembly (ARM)

~gheith/public/gcc-arm-10.3-2021.07-x86 64-aarch64-none-linux-gnu/bin/
aarch64-none-linux-gnu-gcc -nostdlib c¢sid.S -o csid.arm

(stay tuned to see if there are any changes to this command)

You can also add this directory to your PATH so you don’t have to type this all out:

export PATH=~gheith/public/gcc-arm-10.3-2021.07-x86 64-aarch64-none-linux-gnu/bin:S$PATH

aarch64-none-linux—-gnu-gcc -nostdlib csid.S -o csid.arm

Disassemble Machine Code (to ARM)

e objdumpisyour friend!!
e .armtest case files are binary files and pretty unreadable by default
e objdump can output human-readable assembly code

~gheith/public/gcc-arm-10.3-2021.07-x86 64-aarch64-none-linux-gnu/bin
/aarch64-none-linux-gnu-objdump -d csid.arm

Same directory as last slide so if that is on your PATH then this should work:

aarch64-none-linux-gnu-objdump -d csid.arm

Questions?

000088558558S8$S8S0000
0058888558588585885888858S0

0088888885888 SSSSSSSSSSS888SSSSo oS SS oS
o $ oo 05885555 SSSSSSSSSSSSSSSSSSSSSSSS8S8SSSSo $$ $$ So
00 $$"S 08S8SSSSSSS $SSSSSSSSSSSS SERRRISS N $8$808%0$

"$8$8$S%08 0$8888888$ $§$8$858888$ $3885888SS0 $$8$8$8S
§$888S8$ $§$8$858888$ $§$8$858888$ $385888858585858888888S
$S83888888585858888888S $$858888888SS $$835888888888S " "8S8S

1888888858585 8888585858588588558585858858855858888888 "8
888 0883858555555858555855585585555555858858888858888888 "$$So
088" $$$ $$So
$$$ 888585585858585558558555555585885858885888888" "$8888S00000888S0
038838000083838S 53883555585 855558555555585885888888888S o$$$$$$$$$$$$$$$$$
$$$$$$$$ 8888 $S88585S858588888858585888888888888S §88s"
$$$$ "3888885585858585888888588888 0S
"$8So " S88888858585888888"8S $S$$
$$So "$8" 88888 0$S$
SSSo 0$8S$8"
"8S0 03$38$%0"3%0 0$$8$
"$$8$S00 ""388508838880 0888S""
""8888S0000 "$850888888888" "
""8$38388800 $8388388S8S
" 88888S8SS8SSS
$$858888888S
$$85888888
SR

